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Abstract. The M6bius inversion technique is applied to the Poisson summation formula. 
This results in expressions for the remainder term in the Fourier coefficient asymptotic 
expansion as an infinite series. Each element of this series is a remainder term in the 
corresponding Euler-Maclaurin summation formula, and the series has specified con- 
vergence properties. 

These expressions may be used as the basis for the numerical evaluation of sets 
of Fourier coefficients. The organization of such a calculation is described, and discussed 
in the context of a broad comparison between this approach and various other standard 
methods. 

1. Introduction. The purpose of this paper and its sequel is to derive a class of 
formulas suitable for the numerical evaluation of a set of Fourier coefficients 

C(m)f = f f(x) cos 2xrmxdx, m = 1, 2, 3, 

S(m)f = f f(x) sin 2irmxdx, m = 1, 2, 3, ... 

In this paper we restrict ourselves to functions f(x) which (preferably together with 
their first few derivatives) are continuous in the interval [0, 1]. In the sequel we 
shall provide a generalization of these results to cover functions which have algebraic 
or logarithmic singularities of a specified nature in the interval, and provide modifi- 
cations for functions which are analytic in the interval but which have inconvenient 
numerical properties due to nearby poles in the complex plane. 

The approximations C(m)f and emif derived here differ fundamentally from 
other standard formulas, though they have some points in common. They seem 
particularly suitable in a situation in which all the Fourier coefficients are required 
to a uniform accuracy E, a subroutine for f(x) is available and (so far as Part I is 
concerned) f(x) together with its first few derivatives are known to be continuous 
in [0, 1]. The points of similarity include the property that the approximations 
Comf (or Sammf), m = 1, 2, * , are based on the same set of function values or a 
subset of this set. The principal difference is that there is no restriction to a particular 
number of points for function evaluation per period. In fact, coefficients of the type 
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cos 2irj/m do not appear in these formulas. The implementation has a degree of 
flexibility. If the value of the integral fI f(x)dx is known, or approximate values of 
derivatives f() (0) and f(q) (1) are known, this information may be incorporated in a 
simple manner into the formulas with a consequent reduction in the number of 
function values required. 

The first half of this paper contains no approximation theory. In Section 2, the 
Poisson summation formula is introduced. In Section 3 the asymptotic expansion 
for the Fourier coefficient and the Euler-Maclaurin summation formula are derived. 
In Section 5 the M6bius inversion technique is discussed. All these results are 
classical, and are included here briefly to provide a proper background, and to 
establish an appropriate notation. A brief discussion which illustrates the danger 
of using the asymptotic expansion (without the remainder term) for numerical 
calculation is included in Section 4. This provides a proper motivation for the 
evidently new formulas derived in Section 6 by making use of the classical results 
of Sections 2, 3, and 5. These resemble the asymptotic expansion, but provide the 
remainder term in a completely different form. This involves an infinite series; the 
terms of this series may be readily calculated and the ultimate rate of convergence 
of the series is known. 

In the second half of this paper, methods of applying this formula in actual 
calculations are described. This involves the appropriate assignment of various 
parameters occurring in the exact formula, together with the practical determina- 
tion of the point at which to truncate the infinite series. In Sections 8 and 9 an 
implementation of an essentially practical nature is described. In Section 10 some 
theoretical properties of the approximation are described and a standard approxima- 
tion error bound is derived. In Section I a discussion of what the author considers 
to be the essential features of the method is presented, in the form of a comparison 
with a finite version of the Fast Fourier Transform and with the Filon-Luke 
Formulas. 

A suitable starting point for all the theory required in both this paper and its 
sequel is to assume the well-known relations between f(x) and its Fourier series 
7(x). In order to present this theory in a relatively straightforward manner we 
restrict the functions f(x) being considered to those to which the standard theorems 
of finite Fourier analysis may be applied without having to state detailed restrictions 
at every stage. Consequently we introduce the following overall restrictions: 

(1.1) (i) f(x) is absolutely integrable over the closed interval [0, 1], 

(1.2) (ii) f(x) has at most a finite number of singularities in the interval [0, 1]. 

The theory presented in Section 2 requires no further restriction. However, at 
the present time, this theory has been developed to the stage of providing a viable 
method for the calculation of Fourier coefficients only in the case in which these 
singularities are algebraic or logarithmic. 

In the rest of this paper (Part I), we deal with a much smaller class of function. 
Here f(x) has to be continuous in the closed interval [0, 1] and, for the results to be 
more than trivial identities, some of the derivatives of f(x) have to be continuous 
as well: 

(1.3) (iii) f(x) ? C[01, 1], p > 0. 
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2. Finite Forms of the Poison Summation Formula. In this section we define 
the trapezoidal rule and use the fundamental theorem about Fourier series to derive 
a finite form of Poisson's summation formula. These results apply to functions 
which satisfy the first two restrictions (1.1) and (1.2) mentioned in Section 1. In 
Section 3 we confine our attention to continuous functions which satisfy restriction 
(1.3) and derive the standard Fourier coefficient asymptotic expansion and the 
Euler-Maclaurin summation formula. 

The reader who is familiar with these formulas need only refer to these sections 
in order to acquaint himself with the notation. 

It is convenient to emphasize the linear nature of many of the quantities oc- 
curring in this paper. This is done by using the terminology of linear operators 
wherever possible, though most of the expressions required are classical and more 
familiar in an expanded form. Consequently we denote the integral of f(x) by 

(2.0) If= f f(x)dx 

and we denote the Fourier coefficients of f(x) by 

(2.1) C(r)f = f(x) cos 2-rrxdx, r = 1, 2, 3, ... 

1 

(2.2) S(r)f = f f(x) sin 2-rrxdx, r = 1, 2, 3, . 

We invoke the classical theorems from the theory of Fourier analysis to define the 
Fourier series 7(x) of f(x). This is given formally by 

00 00 

(2.3) 7(x) = If + 2 E C(r)f cos 2-rrx + 2 E S(r)f sin 2irrx. 

As is well known the function 7(x) defined as the sum of the series in (2.3) coincides 
in general with the function f(x). So long as f(x) satisfies restrictions (1.1) and (1.2), 
A(x) exists at all points other than possibly those at which f(x) itself is undefined. 
It is very well known that, if the limits in the following equations exist, then 

(2.4) 7(x) = lim ((x + e) + f(x-e)), 0 < x < 1 
e0 

and 

(2.5) 7(0) = 7(1) = 2 lim (f(e) + f( -E)) 
e-0+ 

We now introduce a condensed notation for the trapezoidal quadrature rule 
approximations to the integral 

(2.6) If = If= f f(x)dx. 

The conventional (end point) trapezoidal rule approximation is defined by 

(2.7) Rfm'lf =1 {4 f(o) + E fQ + 2f(l)} 
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We also require a general 'offset' trapezoidal rule. This is one which uses m equally 
spaced function values, the spacing being 1/m with the first abscissa at the point 

(2.8) ta/rn = (I + a)/2m, jai < 1. 

General Offset Trapezoidal Rule I aj # 1. 

(2.9) R[`'a] f= - 
t , t = (I + a)/2, loa < 1 

(The special case a = 1 is given by (2.7) above.) These rule sums exist only if f(x) 
is defined at each of the points required for function evaluation. 

The classical Poisson summation formula relates an infinite series of function 
values to an infinite series of Fourier transforms. It may be written in the form 

00 o_ [00 
(2.10) h E f(jh) = f(t) cos [2-rrt/h]dt . 

Clearly the function f(x) has to satisfy certain properties which ensure that the 
various limiting processes required in this formula exist. In this paper we are con- 
cerned with various finite forms of this formula, namely (2.13) to (2.16) below. 
While these may be obtained directly from the classical Poisson summation formula 
by inserting specially chosen functions f(x), it is more in keeping with our underlying 
approach to proceed directly from the trapezoidal rule sum (2.9) and the Fourier 
series (2.3). Specifically we may substitute for the quantity 7((j + tog - 1)/m) 
which occurs in (2.9), the Fourier series given by (2.3) and change the order of the 
summation operators. This change is permissible since one of the sums is finite. The 
summation over index j may be carried out analytically, making use of identities 
such as 

m 

(2. 1 1 ) I, cos [2xrr (j + tg - 1)/m] = m cos 2-rrta , r/m = integer 

= 0 , r/m H integer. 

The result is as follows: 
General Finite Form of Poisson Summation Formula. 

00 00 
(2.12) R'mal7 _-I = 2 E cos 27rrtaC(rm)f + 2 E sin 27rrtaS(rm)fm 

r=1 r=1 

Subsequently we make use of only four simple special cases of this formula; two 
are obtained from (2.12) by setting a = 1 and a = 0; the third is a linear combination 
of these; the fourth is a linear combination obtained from (2.12) with a = -2 

and a = '. These are respectively: 

(2.13) R[m']y I = 2 E crm)f r=1 

(2.14) R[m'I - 17 = 2 E (1)rC(rm)f, r=1 
00 

(2.15) R[m-] - _ [2m, ] = 2 E 02r-1)m)C 
r=1 
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[M,-l /21 R [m, 1 /21 y) 00 (2.16) 1 (RX112]7f - 
[m l/21) - 

2 E (-1)rls((2rl)m)f. 2 r=1 

These are all simple variants of a finite form of the Poisson summation formula. 
The formulas of this section are valid if f(x) satisfies restrictions (1.1) and (1.2) 

and if the rule sums are defined and so do not involve function evaluation at an 
abscissa for which 7(x) is not defined. Thus (2.14) can be used with f(x) = x-1/12. 

3. The Fourier Coefficient and the Euler-Maclaurin Asymptotic Expansions. 
The results of the previous section are valid for a wide class of functions f(x), which 
includes all those satisfying restrictions (1.1) and (1.2). We now specialize the theory 
to functions f(x) which are continuous in the closed interval [0, 1]. The various 
formulas derived here require that f(x) together with its first p derivatives should 
be continuous in the closed interval [0, 1]. We denote this condition by the statement 

(3.1) f(x) C CI[O, 1]. 
The first result we require is an asymptotic expansion for the Fourier coefficient. 

This may be obtained by integration by parts. Thus 

(3.2) f 
f(x)e27rimxdx= f(1) - f(0) _ 1 f 

f'(x)e2rimxdx (3.) (~e xxo 2irim 2irim fo 
xe d 

The integral on the right is of the same form as that on the left, but with f'(x) 
replacing f(x). Thus we may successively integrate by parts to form a finite series 
whose rth term includes a factor (2-rim)-r, together with a remainder term. Taking 
the real and imaginary parts we find the following formulas. 

The Fourier Coefficient Asymptotic Expansion. 

C(m)f = f(x) cos 27rmxdx 
(3.3) 0 

[(p-l)/2] (_ )q-l(f(2q-1)(j) _ f(2q-1)(0)) (M) 

q=1 (2rm )2 

1 

S(m)f =/ f(x) sin 27rmxdx 
(3.4) 0 

[(p-2) /2] ( _ t q-1 (f(2-,) () _ f (2q) (o) + )M 

q= (27rm)2q+l + S(f 

The most convenient forms of the remainder terms Cp (m)f and Sp (m)f differ according 
as p is even or odd. For example 

(3.5) C~m~f- = f f(2,)(x)(cos 27rmx - I)dx. 

These expansions are valid only if the process of integration by parts is also valid. 
A sufficient condition is that f(x) C CP[O, 1]. In this case the remainder terms satisfy 

(3.6) Cp (M)f - O(m-P); 

S 
p(m) , 0 (m-) , m oo . 

In Section 4 we discuss several examples of the Fourier coefficient asymptotic 
-expansion. 
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These asymptotic expansions may be used to derive another set of asymptotic 
expansions. These are variants of the classical Euler-Maclaurin summation formula. 
The Poisson summation formula (2.12) expresses the error functional Elm,7f = 
R [ma]y - If in terms of an infinite series involving the Fourier coefficients C(rm)f 
and S(rm)f. We may substitute for these their expressions given by the finite sums 
on the right-hand sides of (3.3) and (3.4). The resulting formula may be simplified 
by introducing the Bernoulli functions 

Wco2irrx 
(3)2q() = 2(- 1) +l(2q)! E 

Cos 
2) 

B2,+,(x) 2(-1)q +(2q + 1)! E si) 2+rrx 

This leads to the following formula. 
General Euler-Maclaurin Asymptotic Expansion. 

(3.8) 
E~m " f = R f- If 

= A, By f(q-1)(1) - 1)(O) + Ep(ma 
q=1 In )+ ~maf 

where the remainder term is 

00 00 

Epma]f = 2 A cos 2rrtaXp(mr)f + 2 E sin 2Jrrta,,p(mr)f 
(3.9) r=1 r-l 

IC ~ 7Pt)- 7~a dx. MV1 f(P) ( (x) 0)-pi(ta -mx) 

Since the Bernoulli functions are bounded in the interval [0, 1] it follows that 

Eptmcal a 0 (m-p) , m o in . 

In the subsequent theory, we shall be interested in four special cases of this formula. 
These four cases are Eqs. (3.15) to (3.18) below. It is convenient to express the 
Bernoulli functions in terms of the Riemann zeta function and some of its variants. 
Following Abramowitz and Stegun [1], we define 

;q-+ q + I +iq + * > 1 
2q 3q 4 

1 1 1 

(3.10) 

) t +-+ 1 1+ + > 
3 q 5 q 7 

1 1 1 
:(q) =1- + - - + ..., q >1. 

3q 5q Vq 

Clearly 

(3.11) (q) = (1 - 2t") (q) ; A(q) = (1 -2-2)(q) 
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These functions are related to the Bernoulli functions in the following way: 

(3.12) B2q(1) - 2(-1) -l(2q) B2q( ) _ 2(- 1)?7(2q) 
* ~~~2q! (27r) 2q! (27r) 

3 (B2q(1) + B2q(12)) _ 2(-1) -1X(2q) 
(3.13) 2q_ * ~~~ ~ ~~~2q! si7r) 2q 

(3.14) B2q1( ) _ _ B2q-1 j() _ 2 (-1)3 (2q -1) 
(2q- 1)! (2q - 1)! (27r)-2q- 

We now write down the particular cases of the Euler-Maclaurin asymptotic 
expansion which correspond to the operators introduced in Eqs. (2.13) to (2.16). 
In doing so we replace the Bernoulli functions in (3.8) by equivalent forms expressed 
in terms of the Riemann zeta function and its variants given above 

[(p-1) /2] 2(-l)- (2q) 

.R ImO1f _if = 
(3.1) q= (27rm 

* (f(2q-l)(1) _ f(2q-l) (0)) + E[mj,] f 

[lmu [2m?] Irf-i) /21 2- ) 7 (2q) 
(3.16) R2q=1 

( f(2q-1) (0)) + E [m, 0 f 

(3. 17) q (27rm) 

*f ((2q-1) (I f (2g-1) (0) )+ [Epem, l] f - Ep [2m, l] Of 

1 (Rtm-l /2]f[ _ Rlm~l /2] ) = [p/2] 2 (1) 
" 

(2q - 1) 

(3.18) q-R f (27rmf 

( (2 q-2) (1) _ f (2q-2) (0)) + I [E [m,-1 /21 f _ E-[ml /2] f] 

The first of these is the classical Euler-Maclaurin summation formula. It is interest- 
ing to note the close similarity between this formula (3.15) and the cosine Fourier 
coefficient asymptotic expansion (3.3). The difference is the factor 2v(2q), which 
occurs in each term in (3.15) but is absent in (3.3). For large values of q, P(2q) - 1. 
The subsequent theory exploits this similarity and the corresponding similarity 
between the other expansions (3.16) to (3.18) and either (3.3) or (3.4). 

4. Examples of the Fourier Coefficient Asymptotic Expansion. In Section 3 we 
derived two sets of asymptotic expansions. These expressed the Fourier coefficients 
and the error functional as a finite series, together with a remainder term. All of 
these expansions have a very similar structure. In this section we discuss in more 
detail one of these, the cosine Fourier coefficient expansion (3.3). However, this 
discussion applies with only minor modification to any of these expansions. 

In a problem in which there is no difficulty associated with the calculation of 
derivatives, it would be very convenient if Eq. (3.3) could be used to evaluate the 
cosine Fourier coefficient. This would involve in practice truncating this series at a 
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point at which the remainder term Cp(m)f is thought to be smaller in magnitude 
than e, the required accuracy. The main problem in such a calculation would be 
that of estimating the magnitude of the remainder term C(mf. 

If f(x) happened to be a function for which limpO. Cp(m)f = 0, then the series 
in (3.3) may converge. The numerical summation of this series could then be 
attempted with some sort of confidence. But it is well known that in general this 
is not the case. The infinite series obtained from (3.3) by allowing p to become 
infinite is an asymptotic expansion which is generally divergent. 

The remaining sections in this paper are devoted principally to obtaining a 
representation for the remainder terms Cp(m)f and Sp(m)f which may be evaluated 
in a relatively straightforward manner. Thus it is appropriate to discuss at this 
stage briefly the general pattern of behavior of this expansion and its remainder 
term in certain simple cases. This discussion will indicate the importance of the 
remainder term and show how dangerous it may be to make any assumption about 
its size which is not rigorously justified. 

As a preliminary we consider the information already available. This is that 
Cp(m)f is of order O(m-P). While this is of considerable use in further analytic in- 
vestigations, it is of very doubtful value in direct numerical application. Essentially 
we may assume the following. If we retain the first p/2 terms, and require some 
accuracy E, there is some value of m, say mo, for which the remainder term ICp(m)f I 
< e for all m > mo. Unfortunately, the value of mo as a function of e is not known 
a priori. To determine mo in any particular instance requires an analytical investiga- 
tion based on the particular properties of f(x). 

The simplest example is the polynomial. If f(x) is a polynomial in x of degree d, 
the expansion terminates, leaving an expression for the cosine (sine) Fourier 
coefficient as an even (odd) polynomial in 1/m of degree d or less. 

Another simple class of functions consists of entire functions of order 1. Thus 
if f(x) = eax it is simple to show that if 2rm > Iaj1, the series converges geometrically; 
on the other hand if 2-rm < Iaoe, the series diverges geometrically. This behavior is 
typical of all entire functions of order 1. 

However, the series may converge to an incorrect result. If f(x) 6 Cu[O, 1] and 
is periodic with period 1, we find that 

(4.1) f(q)(1) -f(q)() = 0 all q. 

Each term in the series is zero. This can happen even if the Fourier coefficient is not 
zero. Thus if 

(4.2) f(X) _ecos 27rx 

the information given by the finite series is that 

C(m)f = f f(x) cos 27rmxdx = C2pm)f 

(4.3) 0 

(-1 L (2p) (X) (cos 27rmx - 1)dx. 

Here the cosine Fourier coefficient is equal in value to the remainder term. Neither 
is zero. While perhaps the user might notice and suspect a series all of whose terms 
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are zero, a dangerous situation arises in the case of a function such as 

(4.4) f (x) = ecos 27rx + eax aI < 27rm . 

The use of the series here would produce a series which converged to the Fourier 
coefficient of eax. A different function, which shares this property of periodic func- 
tions, is the 'smudge' function 

(45) f(x) e-l/Xe-1/(l-X)g() , 0 < x < 1 

f(0) = f(1) = 0, 

where g(x) E C-[0, 1]. 
The examples mentioned above are mainly examples in which the series con- 

verges (to a correct or incorrect result) or in which the divergent nature of the 
expansion is at once apparent. 

If f(x) is an analytic function having a singularity in the complex plane at a 
finite distance from the origin, or is an entire function of order greater than 1, the 
series is almost invariably divergent for any value of m. (The exceptions to this 
statement arise if f(x) is periodic with period 1 and C-[O, 1], or if some symmetry 
property has the consequence that the significant part of f (q) (0) and of f (q) (1), al- 
though very large in magnitude, eliminate each other when taken in the combination 
f (a) (1) -f () (0) for all q odd (or even).) Thus with 

(4.6) f(X) =+ X+1I 

the nonzero terms in the series are 

(4.7) T - K2,q = ( 1) (2q - 1)! f { 1 
(4.7) T~2q - - 2 (2,x)2,, 22,q fq 

For large m, the series consists first of terms successively decreasing in magnitude. 
However, when terms T2q' where 2q' > 2-rm are reached, the terms in the series 
successively increase in magnitude. The series diverges for all m. The function f(x) 
given by (4.6) can be shown to have an nth derivative of constant sign in the 
interval [0, 1]. This information can be used to show that the series is semicon- 
vergent, i.e., the value of C2p(m)f is smaller in magnitude than the final included 
term T2p and of the same sign as T2,. 

But in general one cannot expect f(x) to have the property that its high-order 
derivatives have constant sign in the interval [0, 1]. It may be very dangerous in- 
deed to assume that such series have 'approximate' properties of this nature. An 
example (which is not pathological) is given by 

,(4.8) f (x) = 1/(X2 -x + 0.26) . 

This function has simple poles at z = 2 1: li. The individual terms in the expansion 
-have a straightforward analytic expression. In Table 1, the values of T2, and of the 
partial sums 

(4.9) =T2 + T4 + + T2q 
2q 

,are listed for m = 6 and q = 1(1)20. Inspection of the table shows that the terms 
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become very small (about 10-8) and then increase. A plausible conclusion from this 
table is that 

(4.10) f f(x) cos 127rxdx -0.02. 

The true value of this integral is +0.701. 
In conclusion then, the use of this expansion for numerical computation can be 

very unreliable and deceptive unless some bound on the remainder term is available. 
Even then, the true value of the remainder term may be so large that the numerical 
result is not meaningful. In Section 6 an expression for the remainder term is de- 
rived, in the form of a convergent series. Thus a meaningful calculation based on 
the series described in this section may be carried out, if the additional work in- 
volved in calculating the value of the remainder term is included in the calculation. 

TABLE 1 

q qth term: T2q = K2,/622 qth partial sum: 2q 

1 -2.081713996537 - 002 -2.081713996537 - 002 
2 6.240287755500 - 004 -2.019311118929 - 002 
3 -4.405942671467 - 005 -2.023717061616 - 002 
4 5.406335388194 - 006 -2.023176428105 - 002 
5 -9.689934463007 - 007 -2.023273327446 - 002 
6 2.189459081506 - 007 -2.023251432867 - 002 
7 -4.886759442277 - 008 -2.023256319633 - 002 
8 -1.259169531957 - 009 -2.023256445536 - 002 
9 2.215382693859 - 008 -2.023254230153 - 002 

10 -3.699575480714 - 008 -2.023257929715 - 002 
11 5.432548918994 - 008 -2.023252497194 - 002 
12 -7.975547956536 - 008 -2.023260472750 - 002 
13 1.182895543519 - 007 -2.023248643789 - 002 
14 -1.688494712958 - 007 -2.023265528725 - 002 
15 1.911763558659 - 007 -2.023246411118 - 002 
16 4.555025903741 - 008 -2.023241856077 - 002 
17 -1.615341149154 - 006 -2 023403390252 - 002 
18 9.184600203531 - 006 -2.022484930232 - 002 
19 -4.237003493705 - 005 -2.026721933740 - 002 
20 1.809352162352 - 004 -2.008628412092 - 002 

The elements and partial sums in the asymptotic expansion of the sixth cosine 
Fourier coefficient of f(x) = 1/(x2 - x + 0.26). 

5. The M6bius Inversion Technique. One of the standard topics in the theory 
of numbers is the theory of Mobius inversion. This is concerned with the inversion 
of an infinite set of equations. We suppose that the set of numbers G(m), m = 1, 2, 
3, * *,is related to the set of numbers F(m), m = 1, 2, 3, * by the set of equations 

(5.1) G (m) = ajF (m) + a2F(2m) + a3F(3m) + * * * , m = 1, 2, 3, ... 

where a, 0 0 and the coefficients ai are independent of m. Under certain conditions, 
the series (5.1) may be inverted and one may derive a set of equations 

(5.2) F(m) = b1G(m) + b2G(2m) + b3G(3m) + * , m = 1, 2, 3, * 
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where the set of coefficients bi depend only on the set ax. A theorem which gives 
sufficient conditions for such an inversion to be justified is the following: 

Mobius Inversion Theorem. Given a set of numbers a,, a2, ... (a, 5 0) a second 
set b b, ... may be determined recursively using 

(5.3) a1bi = 1; Earbd/r= X0 d, 2,3, 4, 
rld 

If the set of Eqs. (5.1) is valid, the set (5.2) is also valid under the sufficient con- 
dition 

00 O0 

(5.4) E E lakbIF (khm) I < 00 m = 1, 2,3, 
7_=1 k=_1 

Several alternate sets of sufficient conditions are known. The necessary conditions 
do not appear to be known. 

One of the first applications of the technique defined by Eq. (5.3) is to find the 
set bi which corresponds to the set a, = a2 = as = ... = 1. This leads to the 
Mobius numbers ay (Mobius function lu(j)), defined by 

Al= 1, 

(5.5) 1,j = 0 if j has a square factor other than 1, 

,j= (-1) if j is the product of r distinct prime numbers 

(not including 1) . 

(The first ten Mobius numbers are + 1, -1, - 1, 0, -1, +1, -1, 0, 0, + 1.) If we 
refer back to the special cases of the Poisson summation formula given in Eqs. 
(2.13) to (2.16) we see that each consists of a set of equations of precisely the form 
of (5.1). Each may be inverted using the Mobius inversion technique. A minor 
variant of this inversion is carried out in Section 6. For the moment we simply 
determine the appropriate coefficients. We list here the values of bj corresponding to 
four different sets of aj. These turn out to be Mobius numbers or simple functions 
of them. 

THEOREM 5.6. The solutions of Eq. (5.3) for the four following specified sets of a1 
are the corresponding sets bj defined as follows: 

(5.6) (1) a = 1; bj = tj, 

(5.7) (2) a=-1 (jodd); bj= vj = ,j (jodd), 

=-1 (jeven) ; by = 2n-1pk (j = 28kc;k odd) , 

(5.8) (3) ai = 1 (jodd) ; by =tA (jodd) , 
= 0 (jeven); b= 0 (jeven) , 

aj = 1 (j = 4k + 1); b =A (j = 4k + 1), 

(5.9) (4) a-=-1 (j = 4k + 3); bj =-Ml (j = 4k + 3x, 

a} = 0 (jeven) ; b= 0 (jeven) . 
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The proof of (1) above may be found in any standard textbook on Number 
Theory. (See for example Hardy and Wright [9].) The results (3), (4), and (2) are 
successively more complicated consequences of (1). 

In Section 6 we shall use some results which require the inversion of the formula 
for the Riemann zeta function 

00 

(5.10) 00 E> 1 

and the variants given in Section 3. These results constitute a standard application 
of the above theory and are derived in the following manner. Definition (5.10) may 
be written in the form 

(5.11) 0 =1 E 
M 

, m= 1, 2, 3,.... 

This may be identified with (5.1) by setting 

(5.12) G(m) = (q)/mq; F(m) = /Mq, 

a, = a2 = a3 ... = 1. 

Equation (5.2) then follows formally, the values of bj being given by (5.6) above. 

(5.13) 1 = E.t(q) m= 1, 2, 
m 8=q 

This is in fact the form in which we require this identity. The standard form is 

00 

(5.14) 1 0 As 

The validity of (5.13) and so of (5.14) is established by showing that condition (5.4) 
is satisfied. Here we have 

00 00 00 00 

E: E Iakb iF(ktm) I = E EI By / (ktm) 
q 

(5.15) J=1 k=1 1=1 k=1 

< 1q (? (q)) 2 < q > 
m 

the first inequality being obtained by replacing IA, I by its upper bound 1. 
We require in Section 6 the result corresponding to (5.13) for the variants of the 

Riemann zeta function. These are 
00 00 100 

(5.16) (q)- (-1) ; (q) q= E X ; =3(q) - E S 8q 09=1 (2s - 1) o= (2s - 1 

and the inverted formulas are 

1 - W n( ) - . 1-12sq) - ) (5.17) 1 _ 
Ivt~)_E 

psl2 E (-)-82q:2 >I 
m( s=- (MS) s=' ((2s - 1)m)q s=1 ((2s - 1)m)q ' 1 

These may all be established formally following the procedure by which (5.13) 
was established. However, condition (5.4) is not satisfied for the first expression 
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(involving the coefficients vs) for q _ 2 and a separate proof is required for 1 < 
< 2. 

6. Formulas for Fourier Coefficients. The variants of the Poisson summation 
formula (2.13) to (2.16) express the error function R Lrnlf - If or sums of function 
values such as Rin,]I If - R[2m 0"f as series whose elements are Fourier coefficients. 
We are interested in obtaining formulas of the opposite nature, formulas which 
express Fourier coefficients in terms of sums of function values. 

The fundamental idea on which the following theory is based is that the Poisson 
summation formula is a formula to which the Mobius inversion technique may be 
applied. This appears to have been previously unnoticed, except by Goldberg and 
Varga [7]. The inverted formula obtained in this way is (6.10) below which by itself 
is only useful if f(x) happens to be periodic and C00[O, 1]. But the principle, which 
uses the Mobius inversion formula to obtain formulas for Fourier coefficients in 
terms of function values, is very useful and credit for this idea belongs to Goldberg 
and Varga. 

Instead of proceeding directly to invert the Poisson summation formula, it is 
more convenient to invert the corresponding formulas (3.9) which express the re- 
mainder term in the Euler-Maclaurin expansion in terms of remainder terms for the 
Fourier coefficient asymptotic expansion. The four special cases of (3.9) we use are: 

00 00 

(6.1) Einellf = 2 E Cp ) E1/[En.o'f = 2 E (_1)rC,(rm)f 
r==1 r=1 

00 

(6.2) E,[ml]f - EV[2m,11f = 2 EC((2r-l)m)f 

(6.3) 2- (Ep[' / f- Epi/2]f) = 2 A (_-1) S2 f. 
2 ~~~~~~~~~r=1 

Each of these is of precisely the form (5.1), namely 

(6.4) G(m) = a1F(m) + a2F(2m) + a3F(3m) + *- 

and each may be inverted to give a formula of the form (5.2), 

(6.5) F(m) = bG(m) + b2G(2m) + b3G(3m) + *. 

The set of numbers ai are different in each of the four cases and coincide with the 
four sets listed in relations (5.6) to (5.9) of Theorem 5.6 in Section 5. This theorem 
provides the appropriate values of the set of numbers bi. Substituting into (6.5) 
we obtain four formulas, namely 

2n (m) f ME2 [ms "] f E27p[ms,o 
01s 2CUpmJf= y3s8p m.ll= - -vn 

(6.6) s=1 s=1 

= E~iI~ ii2s8[Ep [(2 f-)m,1f_ EV[2m(2sl),l]f] p _ 2 
s==1 

(6.7) 2S2f(m)f = Z, - 2s-1 [2 (E [(2s-1)m-1 /2]- - E,[(2s-l)ml/2]f)] ; P _ 1 
s=1 
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The validity of these inversions follows for most of the stated values of p from the 
Mobius inversion theorem (5.3). Since 

Ep[m'af - O(m-p) and i Is 1, I < s 

the sufficient condition (5.4) is satisfied when p > 2 since then 

E E lakb IF (klm) I < - v (p) (p- 1) 
1=1 k=1 m 

in all four cases. The first and third equation of (6.6) may be validated for p > 1 
using this same condition (5.4). However, the second equation, that involving the 
coefficient vs, requires a separate proof for the case 1 < p < 2. This proof is straight- 
forward, but tedious. Equation (6.7) is in fact valid for p > 1, but for p < 2, the 
proof is extremely sophisticated. This rather special case depends on Eq. (6.17) 
below; there is a brief discussion following that equation. 

These equations, expressed in a different form, are suitable for calculating 
Fourier coefficients. Each remainder term occurring in these equations was originally 
defined (in (3.3), (3.4), and (3.15) to (3.18)) as the difference between some func- 
tional such as C mf and the first p terms of its asymptotic expansion. Thus the next 
step is to substitute for these remainder terms into (6.6) and (6.7). It is convenient 
to describe this in detail for only one of these equations. The corresponding results 
for the others are given towards the end of this section. The first equation in (6.6) is 

00 

(6.8) 2C,(m)f = E ,gE [ms l]f 
s=d 

We may substitute for these remainder terms using (3.3) and (3.15). This gives 

2 f(x) cos 2amxdx = 2 A - q '0 q=1 (2rm) 
oo_ ~~~~~~n 

(6.9) + Es[Rms llf - If- E 8=1 q== 
_(- 1) 12(2q) (f(2q-1)(I) _ f(2q-l) (0)) 

(2wXms) 2q 

This formula is of interest because it provides a remainder term, in the form of an 
infinite series, for the truncated asymptotic series for the Fourier coefficient. It 
appears that (6.9) may be generalized. The special case with n = 0 may be written 

[1 00 

(6.10) 2] f(x) cos 2irmxdx = E [,t[mS l]f - If] 
s=1 

We may add to each side of this equation different multiples of (5.13) with different 
values of q, and in view of the absolute convergence of all the series involved, we 
may combine these to give 

n 
M8,I] ~~~~~K2q~ (2q)1 (6.11) 2 f f(x) cos 2irmxdx = ,k2q + E Rf f - If - 

E_____ 

where K2, K4, *. * *, K2n are arbitrary. Equation (6.9) is merely a special case of this 
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more general relation, obtained by setting K2q = K2q, where 

(6.12) K2q = 2(-1) jl(f(2l2)(1) _ f(2q-l- (0))/(2r) 2q 

In one sense this is an optimum choice as it makes the term in square brackets a 
term of order Q(g-2(n+1)), ensuring the maximum ultimate rate of convergence for 
the series. 

This equation and the others like it given below ((6.13), (6.14), and (6.15)) have 
several outstanding features which make them eminently suitable as a basis for 
numerical computation of the Fourier coefficients. Their possible use in this manner 
is described in considerable detail in the remaining sections of this paper. However, 
it is pertinent at this point to draw the reader's attention to certain aspects of these 
formulas. 

The most interesting feature is that Eq. (6.9) is quite independent of round-off 
errors in the calculation of the elements f(2q-1) (1) - f(2q-1) (0). Since it is simply a 
special case of (6.11) in which the K2q are arbitrary, Eq. (6.9) is true quite inde- 
pendently of the values which are assigned to these elements. The penalty for using 
incorrect values may be that the series converges more slowly, but it converges in 
such a way as to give a correct result for the Fourier coefficient. 

A second feature is that the same set of numerical quantities E18 l1f, s = 1, 2, 
3, *..., s, is required for all the different Fourier coefficients. Here s is the value of s 
for which E [8 1If is so small and is evidently steadily decreasing in such a manner 
that the computer is prepared to disregard E2 8"If for s > s. The calculation of the 
first Fourier coefficient (m = 1) requires all these (except those for which A = 0). 
The second coefficient requires alternate members of the set, and so on. The Fourier 
coefficients with m > s do not need any of these values. They are computed from 
the first p terms of the standard asymptotic expansion only, and with confidence in 
spite of the fact that the approximations to the derivatives being used need not be 
accurate. 

The third feature of Eq. (6.9) or of (6.11) is that, although they are exact equa- 
tions, they are of interest only if a numerical calculation is envisioned. The im- 
mediate reaction of a competent mathematician faced with Eq. (6.11) is to cancel 
out all the terms involving k2q and to reduce it, correctly, to the simpler form (6.10). 
If the sum over index s were to be evaluated analytically, this would be an obvious 
first stage. The importance of (6.9) is that, with these additional terms present on 
the right-hand side, the series converges at a rapid rate. And, aside from one or two 
special circumstances, the only reason for making a series more complicated in order 
to ensure more rapid convergence is that one intends to use it in a numerical 
calculation. 

In the case that f(x) happens to be a C??[0, 1] function and periodic with period 1, 
it follows that 

f (q)(1) = f (-) (0) 
and K2q = 0. In this case (6.9) reduces to the much simpler form (6.10) and in this 
case the convergence of the right-hand side of (6.10) is relatively rapid, each term 
being O(s-P) for any value of p. In the general case though, the convergence of the 
right-hand side of (6.10) is too slow for comfort, being (S-2), and in practice it is 
necessary to use a formula such as (6.9) or (6.11) to obtain a formula suitable for 
computation. 
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The above remarks apply equally to the variants of (6.9), (6.10), and (6.11) given 
below. We conclude this section by deriving these variants from the remaining 
equations in (6.6) and (6.7). Following a directly analogous procedure, we find 

21 ~~~~~~~~"'' 2d - K~~~~~~~~~~~~~~~~~~q ~~~~~~ FR~~~~~~~ms~~~~~~O~~~~f - ~~~~~~~~~ n(2q~~~~~~~~~,Rk2] -i (6.13) (x) cos 2rxmxdx = 1 - - If q=1 (MS) 2, J 
(6.13) q=1 m 8=l 1 (s 

no_ 0 

2 f (x) cos 27rmxdx = 2 A2 

(6.14) q=1 m 

+ Ad Uj , R~~1~ - ft[2ms,1] f - A (2q)K2q , n_ 
s=i; s odd q-1 (mS)2J 

and 

(1 'n K2q ? 
2 f(x) sin27rmxdx = E 2 +-1 E 1)(s-1)/2 

(6.15) q=l m s=1;s odd 

X[ 1 (RWms1/2]f - R[msi /2]f) _ E 
0 (m2 s)I2- A, n > 0, 

where the numbers Kq (q = 1, 3, ... , 2n - 1) are arbitrary. The choice of K2q 
which gives forms for the remainder term in the cosine Fourier coefficient is given 
by (6.12). The analogous choice for the sine Fourier coefficient is K2q+1 = K2q+l 

where 

(6.16) K2q+l=2 (-1 )2-l(f(2q)(j) _ f(2q)(0) )/-(27r)2q+l 

The proof of Eq. (6.15) in the case in which K1 is arbitrary and not given by 
(6.16) requires the validity of the inversion 

cc s-0s ss1 -i 

(6.17) 00 (q) = E E4(-1) 1 = - qI= . (6.17) 
13(q)=1 s(2s - I)q~ 3(q) s=i (2s - 1)q'' 

q 1 

This follows in an elementary manner for q > 1 from the Mobius inversion formula. 
To establish this for q = 1 the author has found it necessary to follow the method 
given in Landau [11, pp. 157-159] in which the corresponding result 

(6.18) EZ Sl=im 1 0 
S1 8 q-*i+(q 

is derived. 
This case (K1 arbitrary) is of little interest from a numerical point of view since 

in applications the value of f(1) - f(o) would normally be available. 

7. Implementation (General Remarks). In the preceding sections, no use of 
approximation theory has been made. The formulas derived in the previous section 
are all exact. Their immediate use is precluded since each includes an infinite sum 
over index s. They differ from the simpler asymptotic series of Section 3 in one 
respect only. The 'infinite tail' of the asymptotic expansion (which normally 
diverges) has been replaced by a convergent infinite sum, the sth term in the sum 
having order 0(S-2n-2). 
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In this section and in subsequent sections we discuss the implementation of a 
calculation based on one of these formulas. In many important respects the same 
treatment may be applied to each of these formulas. It is convenient to describe in 
detail only one, namely (6.11). Any significant differences between different mem- 
bers of the set of formulas will be mentioned in passing. 

While there may be many different ways of implementing these formulas, we 
shall confine our attention to a specific type of problem. We shall assume that we 
have available, in the form of a subroutine or an analytic expression, the function 
f(x). We wish to calculate approximations to a set of cosine Fourier coefficients 

(7.1) C(rn)f = L f(x) cos2wrmxdx, m = 1,2, 3,1 .,.n. 

We require each approximation to have an error smaller in magnitude than a given 
tolerance E. We wish to calculate all the cosine Fourier coefficients which are greater 
in magnitude than e. Thus the value of m in (7.1) depends on e and may be de- 
termined in the course of the calculation. 

The exact formula (6.11), on which we shall base an approximate formula (7.4) 
below, may be written in the following form: 

__ (1 
~~~~~K2 

K 
~4 

K 
~2n I ms,1] 

(7.2) 2C(rn)f = 2j f(x) cos 27rmxdx = 2 + 4 + * + 2n + Z 2sEn+2 f, 
? m m m o 

where 

(7.3) ER[s f= R[sl]f -If _(2)f2 _(4)R4 _(2n)12n 

Here the numbers K92 are arbitrary. The particular choice K2q = K2q where 

(7.4) K2q = 2 (- 1)q-1(f(2q-1) (1) - f(2q-l) (0))/(2ir)2 

leads to the identification of E n+1f with E nQ2f and in this case the sth term of the 
sum is 0(s-2n-2). In general, when K2 # K2, this sth term is 0(s-2) and the ultimate 
rate of convergence of this series is slower. (This is discussed in some detail in 
Section 9.) 

The approximation to (7.2) which we shall consider has the following form: 

(M) 9K2 K4 K2n + ms n 
(7.5) 20(m - +f-4 + 4 + _2n + 2n+2 f 

m m s S /m 

This differs from the exact result (7.2) in that all terms 4B4 f with s greater than s 
have been removed from the right-hand side of (7.2) to form the right-hand side 
of (7.5). 

This set of approximations is specified once the following information is avail- 
able: 

(7.6) (i) The value of n. 

(7.7) (ii) The values of If, K2, K4 4, ** K2n. 

(7.8) (iii) The value of s. 
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The general discussion falls into three parts. In Section 8 we take the view that we 
want to construct a method of procedure using which the values of s and n are de- 
termined in the course of the calculation. In Section 9 we discuss standard practical 
procedures for determining the values of If and the parameter K2q and their rele- 
vance in this particular problem. In Section 10 we discuss theoretical properties of 
the approximation (7.5). 

8. Determination of n and s. Before dealing with the practical aspect of this 
calculation we derive first a simple theorem which relates s to E, the required 
tolerance. 

THEOREM 8.1. In terms of definitions (7.2), (7.3), and (7.5), if s is an integer for 
which 

00 

(8.1) Z ,Eff < 2E, 
S=s+l 

then the set of approximation errors satisfy 

(8.2) I C(m)f - C(m)f! < e. 

The proof is direct: we take the difference between (7.2) and (7.5). Using 
standard manipulation of inequalities, we find 

- M CI~f 1 Rrmsllf IC f - C(f Il = 1 2 14s 2n+2 if 
(8.3) 2s>-s /m 

-< 2 E 
1 

E2+fI < e 
=2 S~ 

Here we have used the inequality Igsl < 1, redefined the summation index, intro- 
duced nonnegative terms into the sum and applied (8.1). 

Condition (8.1) is a sufficient, but not a necessary condition. Since As,4f 
O(s-P) where p > 2, there always exists a value of s satisfying (8.1). If any particular 
value of s satisfies (8.1), so does any greater integer. 

In a practical implementation, the determination of n and s and the methods 
used to determine If and 12q are related to each other. For descriptive purposes 
it is convenient to suppose for the moment that a value of n has been assigned and 
the required numbers If, K2q (q = 1, 2, * * *, n) are already available. In this case 
one may proceed as follows. We calculate successively the values ERls+f, s = 1, 2, 
3, * 1. These values are given by (7.3) and each calculation requires the rule sum 
evaluation R[a 'If. This calculation is to be terminated at a point when we have 
just calculated E[4+f, s = f and we have reason to believe that criterion (8.1) is 
satisfied. It is necessary in practice to replace (8.1) by a practical convergence 
criterion. There are many ways of constructing such a criterion, but none are fool- 
proof. A simple form might have four parts 

(8.4) P.C. 1. Round-off error check, 

(8.5) P.C. 2. Physical limit check, 

(8.6) P.C. 3. ME[n+Jfl < 2E, 

(8.7) P.C. 4. IE[2+2fIs = -2, 2-1, s seem to form a suitable sequence. 
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P.C. 1 and P.C. 2 are normal guards which will terminate the calculation altogether 
if the round-off level is clearly higher than E or if some physical limit set in the code 
is about to be exceeded. P.C. 3 is a simple criterion, which clearly must be satisfied 
before P.C. 4 can be considered. P.C. 4 may be as complicated as the user wishes. 
It should guard against a condition in which the sequence is converging very slowly, 
or the possibility of a single value of EE+,lf being very small. We do not go into any 
detail about these practical convergence criteria here. 

Thus the calculation of these elements is terminated with the Ath term. s 
satisfies some practical convergence criterion P.C. 4 and hopefully it satisfies con- 
dition (8.1). 

At this stage the set of numbers 

(8.8) E2n+2f, S = 1, 2, ,s 

are available. For the calculation of omb)f using (7.5) only a subset of this set is 
required, namely the set 

(8.9) E2n+2 f Ms < x, 5;8 0 

In fact if m > s, the set (8.9) is empty and the sum in (7.5) may be replaced by 
zero. The theorem assures us that, so long as s in fact satisfies (8.1), then the 
calculated approximation C(m)f differs from the true value C(m)f by less than E for 
all m. 

The 'cost' of this calculation includes the following principal items 

(8.10) (i) Evaluation of If, 

(8.11) (ii) Assignment of K2, K42 ...* K2n, 

(8.12) (iii) Evaluation of R[S 1If, s = 1, 2, 3, *. *, s. 

It is important to note that the same set of function values is used for all the 
Fourier coefficients, though all are not used explicitly in the evaluation of each 
coefficient. For example, in the cases where m > s, no function values appear in the 
formula. But they were required previously in order to show that m > s by es- 
tablishing the value of s. Also, function values may have been used to determine the 
values of K2q. 

The description given above is restricted to a simplified situation in which the 
value of n is assigned and the values of K2q (q = 1, 2, . . ., n) are immediately avail- 
able. As described above the values of E28+'f actually encountered are used to 
determine the value of s. 

In a realistic situation, the use of an appropriate value of n is very important. 
The value of s depends on n as well as on e and may be quite different for different 
values of n. Thus one may 'cut costs' under item (ii) by using a small value of n to 
find that this involves a large s and an increase in cost under item (iii). 

To illustrate this dependence we have treated the example 

(8.13) f() = I/(X2 _ x + (5/8)2). 

The values of If and K2q have simple analytic expressions and these have been used 
to calculate E 8+14f for 2n = 0, 2, 4, 6, 8, 10, s = 1, 2, 3, * * 10. These numbers 
are set out in Table 2. The round-off level in the table is about 10-10. 
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Let us suppose that we wanted a uniform accuracy in the result of 5.10-7 and 
that the practical convergence criterion included as part P.C. 3 (8.6) the require- 
ment 

(8.14) JE2[ns+ If I < 5. 10-7 

If we had assigned n = 0, we would have proceeded to calculate the elements in 
the first column of Table 2 until one element satisfied (8.14) with n = 0. This 
sequence converges as S-2 and reaches the desired level at about s = 1473. If we had 
assigned 2n = 2, we would require the value of K2 to calculate the elements in the 
second column of Table 2, but we satisfy (8.14) with s = 24. With 2n = 4, 6, 8, 10 
we find (8.14) is satisfied with s = 9, 8, 8, 8, respectively. In retrospect therefore, in 
this calculation an appropriate value of 2n is 4 or 6. To use a smaller value involves 
an excessive number of function evaluations, while to use a larger value involves 
the calculation of further values of K2q with no saving in the number of function 
evaluations. 

In an automatic code, this information is not available at the start. Thus the 
code has to be arranged in such a way that it determines both n and s on the basis 
of the values of E E' ]f actually encountered. The initial aim of such a routine is to 
find a pair of values n, s which satisfy P.C. 3 (8.6). After this it may retain this value 
of n and proceed to attempt to satisfy the entire convergence criterion, increasing 
the value of s if necessary. 

This first stage has a superficial resemblance to a minimization routine in two 
variables q, S, the function treated being BE1q13f . Only unit steps in positive 
directions q and s are allowed in the search and at any moment, the list E 12]f 
(s = 1, 2, * , s) is available. If the next step involves increasing X, one additional 
entry in the list should be made. If the next step involves increasing q the entire list 
is updated by the addition of the terms t(2q)K24/S2q . The routine should expect 
relatively smooth behavior of this discrete function in the direction of increasing 
X, but not in the direction of increasing q. Also there might be an adjustment built 
in by which the search routine assessed the cost of a step in the 9 direction against 
the cost of a step in the q direction. In straightforward cases all that is really needed 
is an upper bound on q. 

While a poorly constructed code can lead to unnecessary work, a high level in 
sophistication for this part of the code is not necessary. Any terminal value q = n, 

= s gives results of suitable accuracy so long as the fourth part of the practical 
convergence criterion P.C. 4 (8.7) is adequate. All that this first stage should be 
capable of doing is to choose a value of n which is not totally unreasonable. In the 
example illustrated in Table 2, it should be able to increase n beyond 2n = 2 and 
should not increase n beyond 2n = 8. 

Finally, using these particular values of n and s, the calculation of any cosine 
Fourier coefficient is effected by direct substitution into (7.5). The values of 
ERn t31If required have just been calculated while the values of K2q (q = 2, 4, * * *, n) 
were calculated or assigned as a by-product in that calculation. 

If it is known beforehand that f(x) is periodic having period 1, the calculation is 
much simpler since K2q = 0 and the appropriate value of n is zero. However, the 
procedure described above may be used. If the function is periodic, it should appear 
that the values of K2q are all small; good progress in the minimization is occurring 
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by increasing s, while no progress is being made by increasing 4. The routine should 
therefore adjust to a periodic function automatically. 

The approximation C(3mf given by (7.5) is based on the exact expression (6.11) 
for C(m)f. All that is necessary to obtain (7.5) from (6.11) is to replace the infinite 
sum over index s by a finite sum, the restriction being s ? s/m. Two further ap- 
proximations for C (m)f and an approximation e(m)f for S (m)f maybe based on Eqs. 
(6.13), (6.14), and (6.15), respectively, by restricting the sum in an identical manner. 
We list here the resulting formulas: 

5) 2C f - K2 K4 + K _sO2n + f 
m m m s?8/m 

(8.16) 2C(m)f -2 K4 K2n - 

m s, 
l] f04]f) 

m m m s~s/m (s odd) 

(8.17) m m m 

+ 2 (-1)(8)/2bL 8 (ELnj V s21f - E -ms1121f) 
s s/m (s odd) 2 

where the terms in the sum are 

(8.18) Ets.O]f = R Ks f - _ K(2)12 _ 1(4)K4 _ _(2n)1?2 
2n+2 l] J[2] s + 2 4 2n2 

(8.19) E f - = R f _ X()2 X2n 

+ s-1,-)2] _ /212 As I (R[ ,mg,2]-R~1/2]f E[s1-/1f 

(8.20)l)( 2 2 2 

(8.20) 2f f -(8.15f) = numbr2s - sati 

(821 l (RS s,>1 2f 12f -MK 

3(3)Kf3 _ _/(2n - 1)1?2n1 
3 2n-1 

With minor modifications, the discussion of Sections 7 and 8 applies to any of 
these formulas. The quantity E [, f is simply replaced by one of the quantities 
on the right of Eqs. (8.18), (8.19) or (8.20). Theorem 8.1 is valid, except that in the 
case of (8.15) the numbers v,8 satisfy 

(8.21) jz'81 ?<S , S> 1 

in place of Ii I < 1. Thus (8.1) is replaced by 

00 

(8.22) I sI [ s+ f JfI < 2E 

This in turn leads to a slightly more stringent practical convergence criterion 
P.C. 3, P.C. 4. The author has not come across any case in practice in which (8.15) 
seems to be preferable to (7.5). 

The final two formulas (8.16) and (8.17) do not involve If, but involve slightly 
more sophisticated summation operators. These are alternating sums and can be 
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expressed in various forms. For example 

R[sl]f - R[2sl]f =1 (R[Sl]f - R[sO]f) 

(8.23) = (1/2s)[' f(0) - f(1/2s) + f(1/s) - f(3/2s) 

+ * + 12 A~l)] 

This is sometimes called an alternating trapezoidal sum and uses the same function 
values as a trapezoidal rule, but with alternating signs. Similarly 

1 (R `-'1/23f - R[s l/2]f) = (1/2s)[f(1/4s) - f(3/4s) (8.24) 2~ 
+ f(5/4s) - - f((4s - 1)/4s)] 

is known also as the alternating midpoint sum. 
These formulas have a slightly different 'cost structure' from that listed in 

(8.10), (8.11), (8.12). Item (i) does not appear. Item (iii) is about twice as expensive; 
to obtain the same accuracy roughly the same value of s is involved, but R [slf has 
to be replaced by one of the operators (8.23) or (8.24), which involve about twice the 
number of function values. In the calculation of S('m)f this additional expense is 
unavoidable. In the calculation of C(m)f if the value of If is known, the use of (7.5) 
in place of (8.16) leads to a much shorter calculation. 

In formula (8.17), (8.20) the parameter K1 is arbitrary. However, it should 
invariably be replaced by K1 since this involves only function values: 

(8.25) K1 = -2 (f (1)-f (0)-)/ (2r) 

9. Calculation of Parameter K2q. In the implementation described in the 
previous section, the numbers K2q (q = 1, 2, * * *, n) have been treated as parameters. 
In fact, the exact formulas such as (7.2), (7.3) are identities in the set of numbers 
K2q and are valid whatever choice is made. The choice K2q = K2q where K2q is 
given by 

(9.1) K2q - 2(- j)-l(f(2q-l)(1) f(2q-l) (0))/ (2)2q 

is suggested because this choice leads to a faster ultimate rate of convergence of the 
sequence E.48+2f. Specifically, if we define AK2q by 

(9.2) K2q = K2q + AK2q 

then we have 

(9.3) E s 
+2f, O(S-(2n+2)) as s- , 

but using (7.3) 

(9.4) B19[ S f _ v(2)AK2 _ (4) AK4 (2n) AK2n + E[S.If 
(9.4) -n+ 82 4 ~ 2n 2+ 

so that, unless K2 = K2 giving AK2 = 0, we have 

(9.5) ER f-s.'O0(S-2) asse-> 

In the example of the previous section, we have seen the effect of choosing K2 = K4 
= * - -= K2n = 0. This is the same as choosing n = 0 and is done at the cost 
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of introducing a high value of s and consequently a large number of function 
evaluations. 

If the functionf(x) is known in analytic form, the derivatives may in principle be 
calculated analytically. Depending on the structure of the function and the time 
available, it may be too tedious to do this after perhaps some low-order derivative 
has been expressed analytically. Hopefully, automatic algebraic manipulators may 
become more readily available and remove the necessity for the rest of this section. 

The subsequent discussion is restricted to the cases in which analytic differentia- 
tion is not a viable alternative, and some numerical expedient based on function 
values f(xi) has to be used. 

Before commencing such a calculation, or including the facility for such a 
calculation in an automatic code, one must give some attention to the accuracy 
required for these derivatives. The general situation here is one of balancing the cost 
of calculating K2q accurately against the cost of calculating a possibly large number 
of the rule sum approximations R [s "'f. In fact, the discussion in the previous section 
about the choice of n represents an extreme case of precisely this sort of balance. 
There the choice presented was between extremes. Either K2q = 0 or K2q = K2q. 

Here it is more delicate. With increasing effort we may attempt to make K2q suc- 
cessively closer to K2q. At what point should we be content with the accuracy at- 
tained? The reason we calculate K2q at all is to try to arrange that s, the value of 
s for which 

(9.6) IB""' I]f < 2E 

is as small as possible. A glance at (9.4) indicates that we would like the effect of 
the terms t(2q) AK2q/s2q to have died out by the time the value s = s is reached. 
But in general the value of s is not known at this stage. However, if some estimate 
is available, the accuracy required might be chosen so as to satisfy 

(9.7) P(2q)AK2q< e I= 1, 2, ***,n 

or some similar criterion. If we define 

(9.8) F(x) = f(x + 1) -f(x) 

this requirement becomes 

(9.9) lAF(2q-l)(0)l < E2-(2 q = 1,2, *, n 
2~ (2q)n 

While this should not be treated as a precise relationship, it is qualitatively il- 
luminating. For example if we are willing to go as far as s = 6 (a total of 13 function 
evaluations for the rule sums) we find that the accuracy requirement for F'(0) 
may be relaxed by a factor of about 900 for the calculation of F". (0). (However, 
one should bear in mind that it is the absolute accuracy which is under consideration 
here. The actual values of IF(2q-l) (0) 1 may increase with increasing q, leaving a much 
smaller factor in any calculation based on relative accuracy criteria.) If subsequently 
the estimate s = 6 turns out to be too high, the use of these inaccurate derivatives 
may force the actual value of s up to 6. On the other hand, if subsequently the 
estimate s = 6 turns out to be too low, we have used over-accurate approximations 
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for the derivatives. In neither case need the calculation be abandoned or modified. 
We now mention briefly three numerical methods which might be employed to 

calculate the derivatives. The first two could be applied directly to the function 

(9.10) F(x) = f(x + 1) - f(x) 

to evaluate the set F(0)(O), q = 1, 2, ***, 2n. (The even-ordered derivatives are 
required if the sine Fourier coefficients are also being calculated.) Whether or not 
the calculation is arranged to calculate F (0), or to calculate f(q) (1) and f(q) (0) 
separately, any accuracy check at intermediate stages should be based on the value 
of F (q) (0). For example, if f(x) is nearly periodic, F(0) (0) may be small while f(q) (1) 
and f() (0) are nearly equal larger numbers. 

Method 1. Finite-difference approximations. Standard formulas and codes exist 
for the evaluation of derivatives in terms of tabular points. These are rarely used 
because of the undue amplification of round-off error in the final result. In this 
calculation, the use of inaccurate approximations for the derivatives is corrected 
at a later stage in the calculation. Essentially a formula of the type 

N 

(9.1I1) F (q) (0) -- E aq,jF (jh) 
j=-N 

may be used, the approximation being exact apart from round-off error if F(x) is a 
polynomial of degree 2N or less. These techniques are described in Milne-Thompson 
[15], Bickley [2], Kopal [10], and Ballester and Pereyra [16]. 

Method 2. Interpolation for derivatives in the complex plane. A different approach, 
which is convenient for obtaining approximations to a set of 'normalized' Taylor 
coefficients rsf(s) (xo)/s! with a uniform accuracy ET.C., is described in Lyness [13]. 
This requires that f(z) is analytic within a region in the complex plane which in- 
cludes the circle z - xoI < r and is based on complex function evaluations f(zi) at 
points on the circle Iz - xo = r. The formula used for these approximations is 

(9.12) rf()(x o) N 
-r ei2isINf(xo 

+ 
re27IN/) , s = 0 1, 2, *.., N - 1, 

and on the basis of the same set of N complex function values this formula provides 
approximations of polynomial degree N - 1 to f(xo) and its first N - 1 derivatives 
at xo. So long as f(z) is a real function of z when z is real and xo is real, only about 
N/2 separate complex function evaluations are required since advantage may be 
taken of conjugate pairs, i.e., f(xo + rei0) = [f(xo + re-i0)]-. 

While a particular formula is specified once r and N are provided, an automatic 
code may be constructed (see [13]) in which r and ET.C. are provided and the routine 
attempts to determine N in such a way that the error Af (8) (xo) in the result satisfies 

(9.13) rsi Af( (xo) < ETC. S = 0, 1, 2, 3, . 

The routine then returns a set of normalized Taylor coefficients together with an 
error estimate which may be larger than ET.C. if round-off error has necessitated 
this but which is generally smaller than ET.C.. 

An automatic routine of this type requires input parameters r and ET.C.. In view 
of (9.9) and (9.13) we should choose these to satisfy the set of inequalities 
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(9.14) eT.C.(2q - 1! (2 e,1n)2 

r~q-1 2~(2q)n 
It appears that if this inequality is satisfied for q = 1 and q = n it is automatically 
satisfied for q = 2, 3, *, n - 1. If n = 1 any choice satisfying 

ET.C. (27rg)2 

(9.15) ~~~~~~r <~ 2(2) 

is satisfactory. For other values of n, an approximate solution of the equations 
obtained from (9.14) for q = 1 and q = n by replacing the inequality by an equality 
is 

(9.16) 27r+e ; ET.C. (n _ 6) 

Method 3. Global polynomial approximation based on trapezoidal rule approxi- 
mations. There is a technique, described in Lyness and Moler [14], which is de- 
signed to calculate precisely the quantities required. This is based on treating the 
Euler-Maclaurin formula in the same way as we treated the Poisson summation 
formula in Section 6. This leads to what is essentially a modification of Romberg 
integration. This technique makes use of precisely the rule sums which are being 
calculated in any case, and at first sight it seems that the derivatives may be 
calculated at an insignificant additional cost. 

To illustrate the theory we consider Eq. (3.17), which may be written in the 
form 

(9.17) R[ml]f - R[2ml]f = __ i f2 q + Ep[ml]f - 
E [2ml]f 

q=l m 

If we set p = 2N + 2 and write this equation down for N distinct values of m, 
say ml, M2, * I min, and disregard the remainder terms, the resulting N equations 

may be considered to be a set of linear equations in the unknowns K2q, q = 1, 2, 
. . ., N. In fact, shouldf(x) be a polynomial of degree 2N + 1 or less, these equations 

would be exact since in that case the remainder terms are precisely zero. 
This set of equations has an associated matrix of the Vandermonde type which 

may be inverted analytically. However, there exists (see [14]) a generalization of the 
Neville-Romberg algorithm. Using this, the calculation may be undertaken in a 
manner which is a slight generalization of Romberg integration. That is, a solution 
for K2, K4, ... , K2N based on mesh ratios ml, M2, * * mi may be up-dated after 

the calculation of R [m, If - R[2mrl]f, m = mNv+, by extending a generalized T-table. 

If Eq. (3.15) is used instead of (3.17), the procedure includes a standard Rom- 
berg integration as a subset of the calculation. 

This method fits very neatly into the general theory. In earlier versions of an 
automatic code this method was used and its defects were discovered experi- 
mentally. Like the other methods described above, it provides an approximation 
for f(q) (1) - f(q) (0) of polynomial degree 2N + 1. However, this method relies on 

global polynomial approximation (over the whole interval [0, 1]) rather than local 
polynomial approximation in the neighbourhood of an end point. Thus to provide 
accurate approximations the function f(x) should approximate a polynomial over 
the entire interval. Otherwise, grossly inaccurate approximations are obtained. 
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A second extremely annoying feature of this method is that it may interact with 
the rest of the calculation. This is illustrated below by a simple example, in which 
Eq. (7.5) is being used. 

We suppose that 2n = 8 and that the derivatives and the integral are calculated, 
using mesh ratios ml 2, M3, M4n, Mi5. In this case we have calculated approximations 
Pf and K2q, q = 1, 2, 3, 4, which satisfy the equations 

R[mil]f _f = E (2q)K2a i = 1n 2,3, 4,5. 
q=l Min 

These may be written 

Ejo '~f = O. . i = 1, 2, 3,4, 5. 

Thus when we come to calculate the set of values 

E2n'f , s = 1, 2,3, **,2n + 2 = 10 

we should find the five members of this set for which s = ml, m2, M3, M4, and M5 to 
be identically zero (rounding errors apart). That is to say we have managed to 
choose approximations to the derivatives in a manner specifically designed to upset 
the convergence criterion. 

Once this situation is noted, it is quite easy to take care to see that it is not taken 
as an indication of convergence. However, the interaction may not be as specific 
as this extreme example indicates; the apparent gain (obtaining derivative approxi- 
mations at no additional cost) may be completely offset by having to use a much 
more carefully constructed practical convergence criterion and consequently 
additional function evaluations. 

10. The Approximation Error C(m)f - C(m)f. In the previous two sections, the 
emphasis of the discussion is on how to apply the approximation formula to obtain 
results of specified numerical accuracy. In this section we look at the resulting 
approximation and derive some simple theoretical properties of the error functional 
0(m~f - C(m)f. The approximation C(m)f is specified once the following information 
is available: 

(i) The values of parameters n and s. 

(ii) The values of parameters K2q (q = 1, 2, * n , n). 
The principal results in this section involve K2q only through AK2q = KIq - K2q, 
where K2q is given by (7.4). 

We now discuss the polynomial degree of the approximation C(mbf. If f(x) hap- 
pens to be a polynomial of degree 2n + 1 both the Fourier coefficient asymptotic 
expansion (3.3) and the Euler-Maclaurin asymptotic expansion (3.15) are finite 
series having n terms. The remainder terms satisfy 

(10.1) C2n7+2f = 0 E~s"f = 0 

since both integral representations (3.5) and (3.9) involve an integrand with factor 
f(2n+2)(x) and this is zero. This introduces considerable simplifications into many 
of the formulas we have derived. Thus we may write in place of the exact result 
(7.2), (7.3) the simpler formula 
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(10.2) 2C(m)f = K2q. 
q=1 In 

Also, since 

(10.3) 2n+2= - 
E (2q)AK2, + 2lf 
q=1 82q 

we may express (7.5) in the form 

(10.4) 2 (m)f = K2q E E(2q)AK2q 
q=1 m sS/m L (ms)2= 

It follows from (10.2) and (10.4) that 

Cn~f AK2q1 -n (2q)AK2q1 
(10.5) 2(C(m)f - _ =_E As E _(q)2g 

q=1 m sjS/m q=1 

If the quantities AK2q (q = 1, 2, ** , n) are also zero then the right-hand side of 
(10.5) is zero and the approximation C(m)f is exact. Naturally, AK2q is zero if exact 
values k2q = K2q have been used. Also AK2q is zero for the functions under con- 

sideration (polynomials of degree 2n + 1) if the derivatives f(2q-l) (1) - f(2-1) (0) 
which occur in K2q have been approximated using a method which is exact if f(x) is a 
polynomial of degree 2n + 1. Specifically, all three methods given in the previous 
section have this property so long as the parameters N, 2N - 1, N in Methods 1, 2, 
and 3, respectively, exceed 2n. We state this result as a theorem. 

THEOREM 10.6. The approximation C(m)f given by (7.5) is exact for polynomial 
functions f(x) of degree 2n + 1 so long as AK2q = K2q - K2q (q = 1, 2, *.. , n) 

is zero for such functions. 
We now consider the trigonometric degree of the approximation. If f(x) is a 

trigonometric polynomial of degree s, it has the form 

S S 

(10.7) f(x) = Ao + Ar cos 2rrx + Br sin 27rrx. r=1 r=1 
Two results follow readily. These are: 

(10.8) Kq = 0, q > 1, 

(10.9) R[s l]f = If = Ao 2 S > 

Consequently, if we set K2q = K2q in the exact result (7.2), (7.3) we find 

(10.10) 2C(m)f = E Us (f[mSf - If) 
s<--/m 

while the approximation (7.5) has the form 

(1011) 2(m)f = AK2 + uS(Rrm']f - If- E ?(2q)AK2q 
q=1 m s= I/m q=1 (ms) 

These are clearly identical so long as AK2q = 0 (q = 1, 2, ***, n). This happens 
automatically if Methods 1 and 2 for the derivatives have been applied to 

(10.12) F(x) = f(x + 1) - f(x) 
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since all function evaluations of F(x) are zero; but it generally does not happen if 
Method 3 is used, nor if separate applications of the same method have been used 
to approximate f (q) (1) and f (q) (0). 

THEOREM 10.13. The approximation C(m)f given by (7.5) is exact for trigonometric 
polynomials f(x) of degree s ((10.7) above) so long as AK2q (q = 1, 2, *.. , n) is zero 
for such functions (or if n = 0). 

We now derive an approximation error bound of a conventional nature. This 
bound is similar to standard error bounds for quadrature rules of specified degree 
in that it contains a term with a factor 

(10.14) M2n+2 = max f(2n+2)(X) 
O<x<1 

It also contains terms having coefficients AK2q, since unless these are zero, the re- 
sult is not of polynomial degree 2n + 1. 

We deal with the simpler case in which m > s first. In this case, the calculated 
value C(m)f is simply 

n 7 

(10.15) 2C(m)f = 22q m > 
q=1 m 

while the exact value may be expressed in terms of its asymptotic expansion (3.3) or 

(10.16) 2C(m)f = E - 2 + 2C2n+)2f- g=1 m 

The approximation error is therefore 

(10.17) 2(C(m)f - C(m)f) = E AK2q - 2Cn2f, m> >. 
g=j m 

Applying the intermediate value theorem to expression (3.5) for the remainder 
term, we find 

(10.18) l0(m)f - C(m)fl < I E K2qj + m2> n. 2 q-1 M (2-7rm) 

If we express AK2q in terms of AF (2-l) (0) as in (9.8) this gives 

n JA zX(2q-1) (0) Mn2 (1.1) (m)f - C(m)fI ? 
: - AF2ql() + 2 

q=' (27jrm) (27rm)2l2 

This depends on s in the sense that it is valid only if m > s. 
We now proceed to the more complicated case, that in which m ? s. Here we 

shall obtain a bound of the same general structure. The difference is that factor 
(2irm)2q occurring in the denominator will be replaced by (2ir(g + 1))2q-1 and certain 
different multiplying constants occur as coefficients in each term. The bound is 
rather pessimistic since certain sums and integrals are bounded in magnitude by 
sums and integrals of the corresponding absolute quantities in a conventional 
manner. 

We proceed, as in the derivation of Theorem 8.1, to take the difference between 
C(m)f given by (7.2), (7.3) and C(m)f given by (7.5). Taking into account relation 
(9.4), we find 
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(10.20) 2( fC(m) - C(Wf) = [-S(E ]f - E (2q)AK22) 

This is of course an exact relation. In fact, in the case m > s, Eq. (10.17) above may 
be derived from it by Mobius inversion. We proceed to calculate separate bounds 
for each of the n + 1 terms on the right-hand side of (10.20). Some of the details 
of this calculation are given in the Appendix. In particular, we use the inequality 

/ (S) q 1 m >1 ~>1 _ 

(10.21) A E 8/(ms) ' < 4, , q? 1 

whose proof involves placing a bound on the generalized zeta function P(s, a). Using 
this we see that the magnitude of the qth term in the sum over q in (10.20) is 
bounded by 

(10.22) ~(2)IAK I | E <7 (2q)IAK2q _ 7 ?(2q)AF (2q-1)(0) 
(10*22) ?( 2q)JA2qs>,m (mS) 2 <4 ( + 1) 21 = 

1))2q-1 

The first term on the right of (10.20) (and the only term which occurs if AK2q = 0) 

may be bounded if we use the integral representation (3.9) for the error functional. 
Thus 

jEt8~fj -2n+ L' f (2n+2)(X) B2n+2 - B2n+2(1 -sx) dx| (10.23) 2n+2 -S~n+2 0(2n + 2)! 

< I B2n+2L - 2M2+2? (2n + 2) 
s 2n+2 (2n + 2)! (2-rs)2n+2 

Here M2n+2 is an upper bound on If(2n+2)(x) given by (10.14) and we have used the 
fact that the kernel function in the integrand is of definite sign and also the identity 
(3.12). A calculation similar to that which led to (10.22) yields 

Z EgEm1f < > E , EsffI < 2M2U+2 (2n + 2) 1 
I~s2n+2 S E|2'n+2 S 2n+2 2n+2 

(10.24) s>8/m (27)2 k=,+1 

< 7 M2U+2r(2n + 2) 
47r (2x (9 + 1))2n+1 

Introducing inequalities (10.22) and (10.24) into (10.20) we find the approximation 
error bound to be 

(10.25) IC(m)f - C(m)fl < f 7 (2q) I)F (?)f + 7 P(2n + 2)M2n+2 I 
~~~~~q.i 87r (27r( + 8)2 r1 S (2w(r +1)2? 

The factor 7r(2q)/87r lies between 1/2 and 1/4. This bound is valid for all m. It is 
natural to compare it with the bound (10.19), which is valid for m > s only. That 
bound is clearly less extravagant. The inequality (10.25) is independent of m, while 
that in (10.19) depends on s implicitly through the condition m > s. A rough overall 
bound which retains the essential features of both is obtained by replacing s + 1 in 
(10.25) by the quantity max (m, s + 1) wherever it occurs. In this way the overall 
accuracy is reflected in the bound. There is a roughly constant accuracy for m < 
s + 1. For higher values of m the accuracy increases with m. 
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11. Discussion. The methods described in this paper for the calculation of 
Fourier coefficients all stem from one of Eqs. (6.11), (6.13), (6.14), and (6.15). These 
equations are fundamentally variant forms of the result of M6bius inversion of the 
Poisson summation formula. It is convenient to refer to these methods collectively 
as "The Calculation of Fourier Coefficients by M6bius Inversion of the Poisson 
Summation Formula" which will be abbreviated by the initial letters MIPS. 

In recent years there have been many different methods suggested in the 
literature. In the interests of brevity we consider only the two which are possibly 
most familiar. These are 

1. Finite Version of the Fast Fourier Transform (FFT). 

(1 1. :L ) C(m) f = R [2s ,1] 45,m 

where 

(11.2) qm (x) = f (x) cos 2irmx. 

2. Filon-Luke Formulas (FLF). These are of the form 

(11.3) C(m)f = a (0m)R[2sl]km 

(11.4) O(m)f = 3(9)BRSll5]+ + y(dm)R [s, o] 

where qm(x) is defined above, and 

(11.5) Om = 2wm/2s 

(11.6) a (0) = (sin 20/20)2 

(11.7) A (0) = 2[0(1 + cos 0) - 2 sin 0 cos 0]/03 

(11.8) -y(0) = 4[sin 0 - 0 cos 0]/O3 . 

Formula (11.4) is known as Filon's Rule (Filon [5]). A set of formulas of which (11.3) 
and (11.4) are the first two members has been derived by Luke [12]. 

The Fast Fourier Transform (FFT) method is designed for a particular set of 
circumstances. In general, an infinite integral is being approximated by a finite 
integral. Thus any polynomial approximation is not really appropriate since the 
functions involved do not approximate polynomials globally. Then in the calcula- 
tion of a set (m)f (m = 1, 2, ..., 2s), the user is not interested in individual 
accuracy, but rather in the properties of this set of numbers as a whole (Gentleman 
and Sande [6]). Usually the general situation is one in which function values f(x ) 
at regularly spaced intervals may be obtained at virtually no cost. The principal 
cost is the organization of the calculation of the set of quantities C(m)f, m = 1, 2, 
..., 2s from the two sets f(j/2s), j = 1, 2, * *, 2s, and cos (27rj/2s), j = 1, 2, * , 

s/2. A great amount of ingenuity has been expended on this particular data handling 
problem (Cooley and Tukey [3]). 

The Filon-Luke formulas (FLF), and the methods based on M6bius inversion 
(MIPS) described here are more appropriate in a rather different set of circum- 
stances. Here a general function, rather than one derived from approximating an 
infinite interval by a finite interval, is being considered. The intention is to obtain 
accurate individual approximations. And the cost of function evaluations is the 
significant cost. 
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The possible user should obviously decide to what extent his particular problem 
conforms to either of these two significantly different situations. 

We give under several headings below what we consider to be the significant 
properties of the three methods. Together with the remarks made above, a possible 
user should check this list to see which method seems to be most appropriate in his 
case. The list also brings out some major theoretical differences. 

1. Each of the rules may, if necessary, be expressed in the form 

01mf = Z Wjim)f(Xi) m = 1, 2, 3, 

That is, in terms of a single set of function values, a set of Fourier coefficients may 
be calculated by assigning different weights to each function value for each different 
Fourier coefficient. 

2. Unless f(x) and some of its early derivatives are continuous, none of these 
methods is particularly efficient. However, each is 'robust' in the sense that each 
will ultimately give a sufficiently close approximation if enough function values are 
used so long as f(x) is continuous. Thus, 

lim C(m)f = C(m)f; lim C(m)f = C(M)f; f E C[O, 1]. 
S-4+00 S-4+00 

3. Simplicity of Calculation. Both the FFT and the FLF require the set of 
coefficients cos (27rj/2s). In each of these a calculation such as that carried out by 
the Cooley-Tukey algorithm is necessary. The FLF require in addition the evalua- 
tion of coefficients such as fl(Om), 7(Om) and a subsequent calculation. On the other 
hand, the MIPS calculation requires as data the values of A, (s = 1 ... s) and the 
Bernoulli numbers B2q (q = 1, 2, . . *, n) (or in the case of the sine Fourier co- 
efficient, Euler numbers E2q_1 (q = 1, 2, * , n)). The coefficients cos (27rj/2s) do 
not occur explicitly. 

4. Flexibility and Error Criterion. In an actual calculation it is sometimes 
necessary to subsequently improve the accuracy of the approximation. In fact, if 
the intention of the user is to obtain an approximation of specified accuracy E, it 
is difficult to use either the FFT or FLF methods unless approximations cor- 
responding to different values of s are obtained and the accuracy estimated by 
comparing these different numerical results. In either case, the only reasonable 
option is to use values s = s1, s2, ... where si = 2si-1. In this way all previously 
calculated function values are used, but the cost of each step is approximately the 
same as the cost of all the previous steps put together, and provides a considerable 
increase in accuracy. 

On the other hand, the accuracy of the MIPS approximation may be increased 
by increasing the value of s by 1, as described in Section 8. This obtains a marginal 
improvement at a marginal additional cost. Proceeding in this way one ultimately 
uses an appropriate value of s automatically. 

5. Additional Information. A property of the MIPS method not shared by 
other methods is that information such as the value of If or the values of the 
derivatives f(q) (0), f(q) (1) may be incorporated in a simple manner into the formula. 
This has the effect of reducing the number of function values required. 

6. Polynomial and Trigonometric Degrees. It was shown in Section 10 that under 
certain conditions the MIPS approximation has degrees 2n + 1, s respectively. The 
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corresponding degrees for the FFT are 0, 2s - m. The FLF are constructed to have 
specific polynomial degrees. The first two members of this sequence (11.3) and (11.4) 
have polynomial degrees 1 and 3 respectively. All have zero trigonometric degree. 

The comparison of (11.1) and (11.3) is interesting in this context. They differ 
only through the factor a (Om). Thus (11.1) is exact for trigonometric polynomials of 
degree 2s - m, but not for the function f(x) = x, while (11.3) is exact for the func- 
tionf(x) = x, but not for the trigonometrical polynomials. On the other hand (11.1) 
gives an absurd result for m > 2s, i.e., C(m)f while (11.3) may give an 
inaccurate result, but one of the correct order 0(M-2). 

7. Location of Abscissas. Both the FFT and the FLF require function values 
f(j/2s) located at equal intervals. This is particularly convenient if f(x) is tabulated 
at equal intervals and there is an integer number of such intervals in the interval 
[0, 1]. It may also be convenient if the function values have to be derived using a 
recurrence relation, as perhaps in the solution of a differential equation. The MIPS 
method is not so convenient. The function values required are f(j/k) for j = 0, 1, 
* , k and k = 1, 2, *I*, s. While in general many fewer function values may be 
required, the particular location of the abscissas may introduce some complication 
at an earlier stage of a large scale calculation. 

In the cases in which a function subroutine is available, the actual location of 
the abscissas is not important, and all methods are equally convenient in this 
respect. 

8. Number of Function Values per Period. It is stated in many books such as 
Davis and Rabinowitz [4], Hamming [8] that a requirement for a meaningful 
calculation is that the function values occur sufficiently densely so that each period 
of the function f(x) cos 2rrnx includes more than one function value. This certainly 
seems to be valid if either the FFT or the FLF are used. It is an interesting feature 
of the MIPS method that there is no restriction of this type. In the example in 
Section 8 the first 1000 Fourier coefficients are greater than e = 10-6. However, 
these were calculated using only 33 function values together with the exact deriva- 
tives and the value of the exact integral. If a formula based on (8.23) is used, 241 
function values are required explicitly and a further 24 to obtain adequate deriva- 
tives numerically. The integral If is not required. Based on 265 function values, 
any of the integrals C (r)f, 1 < m < 1000 may be calculated in a meaningful manner. 
The period 1/m of any particular integrand does not enter into the calculation at 
the stage when function evaluations are being made and so does not affect their 
location. 

The author does not wish to give any value judgement on the respective merits 
of the three methods discussed in this section. Several sets of numerical calculations 
have confirmed that there are examples in which any of these might be considered 
superior. In Part II various extensions of the MIPS method will be presented to 
handle problems for which no standard method exists. These extensions introduce 
more sophisticated coefficients, but otherwise have a close resemblance to the 
methods described here. 

Appendix 1. Incidental Constants Occurring in Formulas. The MIPS routines 
require surprisingly few constants. The Riemann zeta function and its variants 
occur only in the following combinations: 
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2(-1) q~l(2q) - B2q 

(27r)2q (2q)! 

2 (- 1) 77 (2q) _ 2 - 22q B2q 

(27r) 2q 22q (2q)! ' 

2(-1)q lX(2q) _ 2 _ 1 B2q 

(27r) 2q 2 2q (2q)! ' 

2(-l)q-lf(2q - 1) E2q_2 

(27r)2q-1 42q-l (2q - 2)!' 

B2q and E2q are Bernoulli and Euler numbers (see Abramowitz and Stegun [1, p. 
810]). The early values (those needed in all but the most extensive calculation) are: 

B~q (q =1... 1 1 1 1 5 691~ 
* 6 ' 30' 42' 30' 66' 2730 

E2q (q = 0 ... 6) :1 -1 , 5, -61 , 1385, -50521 , 2702765. 

The other constants required are M6bius numbers (see (5.5)), and the value of 2r. 

Appendix 2. Bound on t(q, a), a > 2, q > 1. The bound given here is useful for 
large values of a. The function f(x) = x-q is convex downwards (f"(x) > 0) for 
x > 0. Consequently any midpoint trapezoidal rule approximation to the integral 

fc x-qdx = (a - 

a-1/2 1 - q 

gives a lower bound to this integral. It follows that 

a) = + t. <(a +-2 < 

and by elementary manipulation 

?(gna)< a 1+ q+}-+ 11}; 
a 

_2. 

Appendix 3. Proof of Inequality (10.21). Here s, q and m are all positive integers. 
Let a be the smallest integer greater than s/m. Then a > (s + 1)/m and the follow- 
ing set of inequalities are valid: 

A g8/(rn)2| < 12 1S2q (2qa) 
,s>Rq /M Msm 8>s/m m 

< ;2,7 r (2qy( + 1 )/m) m 

Applying the inequality in Appendix 2, we find 

-2 (2q, (s+ 1)/m) < 2q1 + 3/2 + 
I 
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The quantity in square brackets is less than 7/4 when s, q, and m are all positive 
integers. This establishes inequality (10.21). 
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